A Review on Outlier Detection Approaches
نویسندگان
چکیده
منابع مشابه
Outlier detection in scatterometer data: neural network approaches
Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the...
متن کاملOutlier Detection : A Survey
Outlier detection has been a very important concept in the realm of data analysis. Recently, several application domains have realized the direct mapping between outliers in data and real world anomalies, that are of great interest to an analyst. Outlier detection has been researched within various application domains and knowledge disciplines. This survey provides a comprehensive overview of e...
متن کاملA Review on Taxol Production through Biotechnological Approaches
Taxol is a very important anticancer drug which was first isolated from Yew plant (Taxus spp.). However, Taxol supply by extraction from natural sources, has several limitations, and cannot meet current market's demands. Therefore, it seems necessary to use alternative production methods. Producing Taxol through biotechnological approaches is among the main options which have some advantages su...
متن کاملFP-outlier: Frequent pattern based outlier detection
An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent itemsets) from...
متن کاملOutlier Detection by Boosting Regression Trees
A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2019
ISSN: 2321-9653
DOI: 10.22214/ijraset.2019.3345